Skip to main content

What is clean room classification?

 Cleanroom classification refers to a system of categorizing cleanrooms based on their level of cleanliness and the permissible amount of particulate and microbial contamination within the controlled environment. Cleanrooms are highly controlled environments used in various industries, such as pharmaceuticals, electronics, biotechnology, and healthcare, where a high level of cleanliness is required to ensure product quality, safety, and integrity.

Cleanroom classification standards are typically defined and governed by international organizations, such as the International Organization for Standardization (ISO) and the U.S. Federal Standard 209E (FS 209E). However, it is important to note that the FS 209E standard has been officially replaced by the ISO 14644 series, which provides a globally accepted framework for cleanroom classification.

The cleanroom classification system is primarily based on the measurement of airborne particles within a specified volume of air. The most commonly used metric for classifying cleanrooms is the number of particles per cubic meter of air, categorized by their size range. The ISO 14644-1 standard specifies the particle size thresholds for each cleanroom class. The lower the class number, the cleaner the environment.



Here is a breakdown of the ISO 14644-1 cleanroom classes and the corresponding particle limits:

1.ISO Class 1: This is the cleanest class with the lowest particle limit. It allows a maximum of 10 particles per cubic meter (≥0.1 μm).

2.ISO Class 2: This class allows a maximum of 100 particles per cubic meter (≥0.1 μm).

3.ISO Class 3: This class allows a maximum of 1,000 particles per cubic meter (≥0.1 μm).

4.ISO Class 4: This class allows a maximum of 10,000 particles per cubic meter (≥0.1 μm).

5. ISO Class 5: This class allows a maximum of 100,000 particles per cubic meter (≥0.1 μm).

6. ISO Class 6: This class allows a maximum of 1,000,000 particles per cubic meter (≥0.1 μm).

7.ISO Class 7: This class allows a maximum of 10,000,000 particles per cubic meter (≥0.1 μm).

8.ISO Class 8: This class allows a maximum of 100,000,000 particles per cubic meter (≥0.1 μm).

It's important to note that the ISO 14644-1 standard also specifies limits for larger particles (≥5 μm), as well as limits for microbial contamination, such as bacteria and fungi.

In addition to airborne particle limits, cleanroom classification may also consider factors like air changes per hour, temperature, humidity, pressure differentials, and filtration efficiency. These factors may vary based on the specific industry requirements and the criticality of the processes being conducted within the cleanroom.

Cleanroom  Bahrain classification plays a vital role in ensuring product quality, preventing contamination, and maintaining a controlled environment for sensitive manufacturing and research processes. Compliance with the appropriate cleanroom class ensures that the required cleanliness levels are achieved, monitored, and maintained throughout the operational life of the cleanroom facility.

Comments

Popular posts from this blog

A Comprehensive Guide to Choosing the Correct Laboratory Furniture

 Introduction: Laboratories play a crucial role in various industries, from healthcare and pharmaceuticals to research and development. Choosing the right laboratory furniture is essential for creating a safe, functional, and efficient workspace. This guide will walk you through the key factors to consider when selecting laboratory furniture to ensure that your lab meets its operational needs while maintaining safety and productivity. 1.Assess Your Needs: Before diving into furniture options, identify your lab's specific requirements. Consider the type of research or work conducted, the equipment to be housed, and the number of users. This assessment will help you determine the types and quantities of furniture needed. 2.Safety First: Laboratory safety is paramount. Choose furniture that adheres to safety regulations and guidelines. Look for features like chemical resistance, fire retardancy, and ergonomic design. Choose materials that are easy to clean and maintain to minimize con

Understanding Cleanroom: Maintaining Purity for Innovation

  Introduction In today’s world of advanced technology and cutting-edge industries, maintaining a controlled and sterile environment is crucial for numerous sectors. Whether it’s semiconductor manufacturing, pharmaceutical research, or aerospace engineering, cleanrooms play a vital role in ensuring the highest standards of quality, precision, and safety. In this blog post, we will explore the concept of cleanrooms, their significance, and the key principles behind their design and operation. What is a Cleanroom? A cleanroom is a highly controlled environment where the level of airborne particles, such as dust, microbes, and chemical vapors, is kept at a minimum. It provides a restricted atmosphere that prevents contamination from impacting sensitive processes, equipment, or products. The primary objective of a cleanroom is to create a stable environment that minimizes or eliminates the introduction, generation, and retention of particles, ensuring optimal conditions for research, devel